Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Epilepsy Behav ; 147: 109396, 2023 Oct.
Article En | MEDLINE | ID: mdl-37619461

Epilepsy is often linked to various psychiatric symptoms, with anxiety, depression, and interictal dysphoric disorders being the most prevalent. Few studies have investigated posttraumatic stress disorder (PTSD) in epilepsy, but they suggest a notable prevalence of PTSD. PTSD is known to be associated with cognitive impairments, particularly memory and executive functions. Our proposed exploratory study aims to investigate executive attentional control and emotional inhibition in patients with drug-resistant epilepsy (DRE) who exhibit PTSD symptoms compared with a healthy control group. Additionally, some PWE can manage their seizures using emotional and cognitive strategies, we find it relevant to explore the connection between their regulation abilities, cognitive control performance, and PTSD symptoms. We included 54 PWE and 60 healthy participants. They completed anxiety and depression scales as well as two questionnaires assessing PTSD symptoms and a questionnaire that measured the perceived self-control of seizures. We measured executive control using an executive control task (Attention Network Test, ANT) and an emotional Go/No-Go task. We found a positive correlation between PTSD scores (PDS-5) and performance at the ANT task. In contrast, in the emotional inhibition (Go/No-Go) task, behavioral inhibition errors were positively correlated with PTSD scores, specifically with hypervigilance symptoms in PTSD+ patients. There was a positive correlation between response reaction times in an aversive condition and PTSD scores: the more severe the PTSD symptoms, the faster the PWE identified stimuli in the angry face condition of the Go/No-Go task. Regarding perceived seizure control, we found correlations between alertness and PTSD symptoms associated with seizure anticipation during the inter- and peri-ictal periods. Patients with PTSD symptoms reported better seizure control. Our findings suggest that epilepsy patients with PTSD experience cognitive changes such as heightened executive attentional control, weakened emotional inhibition, and improved seizure control perception.

2.
Epilepsy Res ; 195: 107200, 2023 09.
Article En | MEDLINE | ID: mdl-37542747

BACKGROUND: Several studies implicate brain-derived neurotrophic factor (BDNF) in the pathophysiology of epilepsy. In particular, preclinical data suggest that lower serum BDNF is a biomarker of epilepsy severity and psychiatric comorbidities. We tested this prediction in clinical epilepsy cohorts. METHODS: Patients with epilepsy were recruited from 4 epilepsy centers in France and serum BDNF was quantified. Clinical characteristics including epilepsy duration, classification, localization, etiology, seizure frequency and drug resistance were documented. Presence of individual anti-seizure medications (ASM) was noted. Screening for depression and anxiety symptoms was carried out in all patients using the NDDI-E and the GAD-7 scales. In patients with positive screening for anxiety and/or depression, detailed psychiatric testing was performed including the Mini International Neuropsychiatric Interview (MINI), STAI-Y, Holmes Rahe Stressful Events Scale and Beck Depression Interview. Descriptive analysis was applied. Spearman's test and Pearson's co-efficient were used to assess the association between BDNF level and continuous variables. For discrete variables, comparison of means (Student's t-test, Mann-Whitney u-test) was used to compare mean BDNF serum level between groups. Multivariate analysis was performed using a regression model. RESULTS: No significant correlation was found between serum BDNF level and clinical features of epilepsy or measures of depression. The main group-level finding was that presence of any ASM at was associated with increased BDNF; this effect was particularly significant for valproate and perampanel. CONCLUSION: Presence of ASM affects serum BDNF levels in patients with epilepsy. Future studies exploring BDNF as a possible biomarker of epilepsy severity and/or psychiatric comorbidity must control for ASM effects.


Brain-Derived Neurotrophic Factor , Epilepsy , Humans , Comorbidity , Epilepsy/diagnosis , Epilepsy/drug therapy , Epilepsy/epidemiology , Anxiety , Psychiatric Status Rating Scales , Biomarkers , Depression/diagnosis , Depression/epidemiology
3.
Ann Neurol ; 92(6): 1052-1065, 2022 12.
Article En | MEDLINE | ID: mdl-36054730

OBJECTIVE: This study was undertaken to characterize clinical expression and intracerebral electroencephalographic (EEG) correlates of emotional expression during prefrontal epileptic seizures. METHODS: We performed a descriptive analysis of seizure semiology in patients explored with stereo-EEG (SEEG) for pharmacoresistant prefrontal epilepsy, using a semiquantitative score for seizure-related emotional behavior. Two independent observers scored occurrence and intensity of objective emotional features (face/body movements/vocalization/overall appearance), testing interobserver reliability. Intracerebral electrophysiological changes were documented. Cluster analysis and principal component analysis (PCA) compared behavioral signs with neural SEEG correlates. For each patient, the clinical and anatomoelectrophysiological scores were established, based on a prototypical emotional seizure. RESULTS: Forty-two patients (469 seizures) were included. Interobserver correlation for emotional signs was satisfactory (kappa = 0.6-0.8). Prevalence of any subjective and/or objective ictal emotional phenomena was 79% (33/42); objective emotional signs occurred in 27 of 42 subjects (64%). Negatively valenced emotional semiology (ictal feeling of fear, defensive and/or aggressive behaviors) was much more prevalent than positively valenced, prosocial behaviors. Cluster analysis and PCA identified 4 groups with different occurrence of emotional signs and cerebral correlates. Two main clusters of negatively valenced behavior were identified: "active threat response," associated with seizure organizations involving posterior orbitofrontal cortex, anterior cingulate, and dorsolateral and/or ventrolateral prefrontal cortex; and "passive fear," associated with amygdala, other mesial temporal structures, and posterior orbitofrontal cortex. INTERPRETATION: Emotional behaviors, especially fear/threat response, are common in prefrontal seizures, reflecting the role of the prefrontal cortex in emotional control. Different cortical seizure localizations were associated with "passive fear" and "active threat response" seizure behaviors at the group level. ANN NEUROL 2022;92:1052-1065.


Epilepsies, Partial , Epilepsy , Humans , Reproducibility of Results , Seizures/diagnosis , Electroencephalography
4.
Clin Neurophysiol ; 143: 84-94, 2022 11.
Article En | MEDLINE | ID: mdl-36166901

OBJECTIVE: To study changes of thalamo-cortical and cortico-cortical connectivity during wakefulness, non-Rapid Eye Movement (non-REM) sleep, including N2 and N3 stages, and REM sleep, using stereoelectroencephalography (SEEG) recording in humans. METHODS: We studied SEEG recordings of ten patients during wakefulness, non-REM sleep and REM sleep, in seven brain regions of interest including the thalamus. We calculated directed and undirected functional connectivity using a measure of non-linear correlation coefficient h2. RESULTS: The thalamus was more connected to other brain regions during N2 stage and REM sleep than during N3 stage during which cortex was more connected than the thalamus. We found two significant directed links: the first from the prefrontal region to the lateral parietal region in the delta band during N3 sleep and the second from the thalamus to the insula during REM sleep. CONCLUSIONS: These results showed that cortico-cortical connectivity is more prominent in N3 stage than in N2 and REM sleep. During REM sleep we found significant thalamo-insular connectivity, with a driving role of the thalamus. SIGNIFICANCE: We found a pattern of cortical connectivity during N3 sleep concordant with antero-posterior traveling slow waves. The thalamus seemed particularly involved as a hub of connectivity during REM sleep.


Electroencephalography , Sleep, REM , Electroencephalography/methods , Humans , Sleep/physiology , Sleep, REM/physiology , Thalamus/physiology , Wakefulness/physiology
5.
Neurophysiol Clin ; 52(4): 323-332, 2022 Aug.
Article En | MEDLINE | ID: mdl-35989149

OBJECTIVES: To assess hippocampal function during stereoelectroencephalography (SEEG) investigations through the study of the medial temporal lobe event-related potential (ERP) MTL-P300. METHODS: We recorded the MTL-P300 during a visual oddball task, using hippocampal electrodes implanted for SEEG in 71 patients, in a preoperative epilepsy investigation. The presence of an MTL-P300 and its amplitude were correlated with hippocampal involvement during seizures and memory function. RESULTS: Analysis using ROC curves revealed that an MTL-P300 amplitude below -46 µV, has a specificity of 93.3% in detecting the epileptogenic zone, and absence of the MTL-P300 in the left hippocampus of patients with typical language organization was associated with marked alteration of verbal memory scores. There was a significant correlation between performance in non-verbal memory tests and the amplitude of the MTL-P300 in the right hippocampus of patients with left hemispheric seizures (immediate visual recall: r = 0.67, p = 0.005; delayed visual recall: r = 0.56, p = 0.025). Using a linear regression, we confirmed that the absence of the MTL-P300 in the left hippocampus, the involvement of the left hippocampus during seizures, and the duration of epilepsy were predictors of verbal memory deficits. CONCLUSION: Analysis of the MTL-P300 during SEEG recording provides relevant information for the analysis of hippocampal functionality and can help to localize the epileptogenic zone.


Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Epilepsy , Drug Resistant Epilepsy/diagnosis , Evoked Potentials , Hippocampus , Humans , Magnetic Resonance Imaging , Neuropsychological Tests , Seizures
6.
Epilepsia ; 63(8): 1942-1955, 2022 08.
Article En | MEDLINE | ID: mdl-35604575

OBJECTIVE: The virtual epileptic patient (VEP) is a large-scale brain modeling method based on virtual brain technology, using stereoelectroencephalography (SEEG), anatomical data (magnetic resonance imaging [MRI] and connectivity), and a computational neuronal model to provide computer simulations of a patient's seizures. VEP has potential interest in the presurgical evaluation of drug-resistant epilepsy by identifying regions most likely to generate seizures. We aimed to assess the performance of the VEP approach in estimating the epileptogenic zone and in predicting surgical outcome. METHODS: VEP modeling was retrospectively applied in a cohort of 53 patients with pharmacoresistant epilepsy and available SEEG, T1-weighted MRI, and diffusion-weighted MRI. Precision recall was used to compare the regions identified as epileptogenic by VEP (EZVEP ) to the epileptogenic zone defined by clinical analysis incorporating the Epileptogenicity Index (EI) method (EZC ). In 28 operated patients, we compared the VEP results and clinical analysis with surgical outcome. RESULTS: VEP showed a precision of 64% and a recall of 44% for EZVEP detection compared to EZC . There was a better concordance of VEP predictions with clinical results, with higher precision (77%) in seizure-free compared to non-seizure-free patients. Although the completeness of resection was significantly correlated with surgical outcome for both EZC and EZVEP , there was a significantly higher number of regions defined as epileptogenic exclusively by VEP that remained nonresected in non-seizure-free patients. SIGNIFICANCE: VEP is the first computational model that estimates the extent and organization of the epileptogenic zone network. It is characterized by good precision in detecting epileptogenic regions as defined by a combination of visual analysis and EI. The potential impact of VEP on improving surgical prognosis remains to be exploited. Analysis of factors limiting the performance of the actual model is crucial for its further development.


Electroencephalography , Epilepsy , Brain/diagnostic imaging , Brain/surgery , Electroencephalography/methods , Epilepsy/diagnostic imaging , Epilepsy/surgery , Humans , Magnetic Resonance Imaging/methods , Retrospective Studies , Seizures/surgery , Treatment Outcome
7.
Epilepsia ; 63(4): 961-973, 2022 04.
Article En | MEDLINE | ID: mdl-35048363

OBJECTIVE: Nodular heterotopias (NHs) are malformations of cortical development associated with drug-resistant focal epilepsy with frequent poor surgical outcome. The epileptogenic network is complex and can involve the nodule, the overlying cortex, or both. Single-pulse electrical stimulation (SPES) during stereo-electroencephalography (SEEG) allows the investigation of functional connectivity between the stimulated and responsive cortices by eliciting cortico-cortical evoked potentials (CCEPs). We used SPES to analyze the NH connectome and its relation to the epileptogenic network organization. METHODS: We retrospectively studied 12 patients with NH who underwent 1 Hz or 0.2 Hz SPES of NH during SEEG. Outbound connectivity (regions where CCEPs were elicited by NH stimulation) and inbound connectivity (regions where stimulation elicited CCEPs in the NH) were searched. SEEG channels were then classified as "heterotopic" (located within the NH), "connected" (located in normotopic cortex and showing connectivity with the NH), and "unconnected." We used the epileptogenicity index (EI) to quantify implication of channels in the seizure-onset zone and to classify seizures as heterotopic, normotopic, and normo-heterotopic. RESULTS: One hundred thirty-five outbound and 72 inbound connections were found. Three patients showed connectivity between hippocampus and NH, and seven patients showed strong internodular connectivity. A total of 39 seizures were analyzed: 23 normo-heterotopic, 12 normotopic, and 4 heterotopic. Logistic regression found that "connected" channels were significantly (p = 8.4e-05) more likely to be epileptogenic than "unconnected" channels (odds ratio 4.71, 95% confidence interval (CI) [2.17, 10.21]) and heterotopic channels were also significantly (p = .024) more epileptogenic than "unconnected" channels (odds ratio 3.29, 95% CI [1.17, 9.23]). SIGNIFICANCE: SPES reveals widespread connectivity between NH and normotopic regions. Those connected regions show higher epileptogenicity. SPES might be useful to assess NH epileptogenic network.


Choristoma , Drug Resistant Epilepsy , Epilepsy , Choristoma/complications , Drug Resistant Epilepsy/complications , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Electric Stimulation , Electroencephalography , Evoked Potentials/physiology , Humans , Retrospective Studies , Seizures/complications
8.
Clin Neurophysiol ; 133: 94-103, 2022 01.
Article En | MEDLINE | ID: mdl-34826646

OBJECTIVE: Amygdala enlargement is increasingly described in association with temporal lobe epilepsies. Its significance, however, remains uncertain both in terms of etiology and its link with psychiatric disorders and of its involvement in the epileptogenic zone. We assessed the epileptogenic networks underlying drug-resistant epilepsy with amygdala enlargement and investigated correlations between clinical features, epileptogenicity and morphovolumetric amygdala characteristics. METHODS: We identified 12 consecutive patients suffering from drug-resistant epilepsy with visually suspected amygdala enlargement and available stereoelectroencephalographic recording. The epileptogenic zone was defined using the Connectivity Epileptogenicity Index. Morphovolumetric measurements were performed using automatic segmentation and co-registration on the 7TAMIbrain Amygdala atlas. RESULTS: The epileptogenic zone involved the enlarged amygdala in all but three cases and corresponded to distributed, temporal-insular, temporal-insular-prefrontal or prefrontal-temporal networks in ten cases, while only two were temporo-mesial networks. Morphovolumetrically, amygdala enlargement was bilateral in 75% of patients. Most patients presented psychiatric comorbidities (anxiety, depression, posttraumatic stress disorder). The level of depression defined by screening questionnaire was positively correlated with the extent of amygdala enlargement. CONCLUSIONS: Drug-resistant epilepsy with amygdala enlargement is heterogeneous; most cases implied "temporal plus" networks. SIGNIFICANCE: The enlarged amygdala could reflect an interaction of stress-mediated limbic network alterations and mechanisms of epileptogenesis.


Amygdala/physiopathology , Drug Resistant Epilepsy/physiopathology , Epilepsies, Partial/physiopathology , Nerve Net/physiopathology , Adolescent , Adult , Amygdala/diagnostic imaging , Brain Mapping , Child , Child, Preschool , Drug Resistant Epilepsy/diagnostic imaging , Electroencephalography , Epilepsies, Partial/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Young Adult
9.
Epilepsia ; 62(9): 2048-2059, 2021 09.
Article En | MEDLINE | ID: mdl-34272883

OBJECTIVE: Stereo-electroencephalography (SEEG)-guided radiofrequency thermocoagulation (RF-TC) aims at modifying epileptogenic networks to reduce seizure frequency. High-frequency oscillations (HFOs), spikes, and cross-rate are quantifiable epileptogenic biomarkers. In this study, we sought to evaluate, using SEEG signals recorded before and after thermocoagulation, whether a variation in these markers is related to the therapeutic effect of this procedure and to the outcome of surgery. METHODS: Interictal segments of SEEG signals were analyzed in 38 patients during presurgical evaluation. We used an automatized method to quantify the rate of spikes, rate of HFOs, and cross-rate (a measure combining spikes and HFOs) before and after thermocoagulation. We analyzed the differences both at an individual level with a surrogate approach and at a group level with analysis of variance. We then evaluated the correlation between these variations and the clinical response to RF-TC and to subsequent resective surgery. RESULTS: After thermocoagulation, 19 patients showed a clinical improvement. At the individual level, clinically improved patients more frequently had a reduction in spikes and cross-rate in the epileptogenic zone than patients without clinical improvement (p = .002, p = .02). At a group level, there was a greater decrease of HFOs in epileptogenic and thermocoagulated zones in patients with clinical improvement (p < .05) compared to those with no clinical benefit. Eventually, a significant decrease of all the markers after RF-TC was found in patients with a favorable outcome of resective surgery (spikes, p = .026; HFOs, p = .03; cross-rate, p = .03). SIGNIFICANCE: Quantified changes in the rate of spikes, rate of HFOs, and cross-rate can be observed after thermocoagulation, and the reduction of these markers correlates with a favorable clinical outcome after RF-TC and with successful resective surgery. This may suggest that interictal biomarker modifications after RF-TC can be clinically used to predict the effectiveness of the thermocoagulation procedure and the outcome of resective surgery.


Electrocoagulation , Electroencephalography , Biomarkers , Humans , Imaging, Three-Dimensional , Seizures , Treatment Outcome
10.
Clin Neurophysiol ; 132(9): 2046-2053, 2021 09.
Article En | MEDLINE | ID: mdl-34284239

OBJECTIVES: Parietal lobe seizures (PLS) are characterized by multiple clinical manifestations including motor signs. The mechanisms underlying the occurrence of motor signs are poorly understood. The main objective of this work was to estimate the functional coupling of brain regions associated with this clinical presentation. METHODS: We retrospectively selected patients affected by drug-resistant epilepsy who underwent Stereoelectroencephalography (SEEG) for pre-surgical evaluation and in whom the seizure onset zone (SOZ) was located in the parietal cortex. The SOZ was defined visually and quantitatively by the epileptogenicity index (EI) method. Two groups of seizures were defined according to the presence ("motor seizures") or the absence ("non-motor seizures") of motor signs. Functional connectivity (FC) estimation was based on pairwise nonlinear regression analysis (h2 coefficient). To study FC changes between parietal, frontal and temporal regions, for each patient, z-score values of 16 cortico-cortical interactions were obtained comparing h2 coefficients of pre-ictal, seizure onset and seizure propagation periods. RESULTS: We included 22 patients, 13 with "motor seizures" and 9 with "non-motor seizures". Resective surgery was performed in 14 patients, 8 patients had a positive surgical outcome (Engel's class I and II). During seizure onset period, a decrease of FC was observed and was significantly more important (in comparison with background period) in "motor" seizures. This was particularly observed between parietal operculum/post-central gyrus (OP/PoCg) and mesial temporal areas. During seizure propagation, a FC increase was significantly more important (in comparison with seizure onset) in "motor seizures", in particular between lateral pre-motor (pmL) area and precuneus, pmL and superior parietal lobule (SPL) and between inferior parietal lobule (IPL) and supplementary motor area (SMA). CONCLUSIONS: Our study shows that motor semiology in PLS is accompanied by an increase of FC between parietal and premotor cortices, significantly different than what is observed in PLS without motor semiology. SIGNIFICANCE: Our results indicate that preferential routes of coupling between parietal and premotor cortices are responsible for the prominent motor presentation during PLS.


Drug Resistant Epilepsy/physiopathology , Motor Cortex/physiopathology , Nerve Net/physiopathology , Parietal Lobe/physiopathology , Seizures/physiopathology , Adolescent , Adult , Child , Child, Preschool , Drug Resistant Epilepsy/diagnosis , Electroencephalography , Female , Humans , Infant , Male , Middle Aged , Retrospective Studies , Seizures/diagnosis , Stereotaxic Techniques , Young Adult
11.
Epilepsy Behav ; 121(Pt A): 108083, 2021 08.
Article En | MEDLINE | ID: mdl-34091128

Anxiety and depression in epilepsy are strongly documented but post-traumatic stress disorder (PTSD) is underestimated and poorly known. We studied the links between psycho-traumagenic events (TE), onset of epilepsy, and severity of PTSD symptoms in patients with epilepsy. The study included 54 patients with epilepsy and 61 controls. We used validated questionnaires to screen for anxiety, depression, and PTSD symptoms and we conducted an interview to measure the prevalence of TE. We developed an original exploratory questionnaire to assess the presence of PTSD during interictal and peri-ictal periods. The results show that patients reported more exposure to a TE and presented significantly more severe PTSD symptoms than controls. Seventy-eight percent of patients (vs. 52% of controls) had been exposed to a TE, and 26% (vs. 7%) had a score above the diagnostic threshold of the PTSD scale. In addition, 18.6% of patients reported that their epilepsy began at the same time as they began to experience PTSD symptoms following a TE. Patients with high PTSD scores (above the threshold, n = 14) reported significantly more depression symptoms than patients without PTSD and reported PTSD symptoms both during the ictal and peri-ictal periods. Within the whole group of patients, anxiety (72%) and depression (33%) symptoms significantly correlated with PTSD symptoms reported by the scale. This study shows that patients with epilepsy have increased prevalence of self-reported PTSD symptoms. We describe the clinical picture specific to patients with epilepsy, which may include classical PTSD symptoms but also specific peri-ictal symptoms.


Epilepsy , Stress Disorders, Post-Traumatic , Anxiety/epidemiology , Anxiety/etiology , Anxiety Disorders , Epilepsy/complications , Epilepsy/epidemiology , Humans , Stress Disorders, Post-Traumatic/complications , Stress Disorders, Post-Traumatic/epidemiology , Surveys and Questionnaires
12.
Neuroinformatics ; 19(4): 639-647, 2021 10.
Article En | MEDLINE | ID: mdl-33569755

Multicentre studies are of utmost importance to confirm hypotheses. The lack of established standards and the ensuing complexity of their data management often hamper their implementation. The Brain Imaging Data Structure (BIDS) is an initiative for organizing and describing neuroimaging and electrophysiological data. Building on BIDS, we have developed two software programs: BIDS Manager and BIDS Uploader. The former has been designed to collect, organise and manage the data and the latter has been conceived to handle their transfer and anonymisation from the partner centres. These two programs aim at facilitating the implementation of multicentre study by providing a standardised framework.


Brain , Neuroimaging , Brain/diagnostic imaging , Software
14.
Epilepsy Behav ; 116: 107742, 2021 03.
Article En | MEDLINE | ID: mdl-33493809

OBJECTIVE: Postictal generalized suppression (PGES) may be associated with SUDEP risk. We aimed to study metabolic changes on 18Fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in patients with focal to bilateral (generalized) seizures (GTCS) and PGES on stereoelectroencephalography (SEEG). METHODS: We analyzed interictal brain metabolism in a group of 19 patients with widespread postictal suppression (PGES+) associated with SEEG-recorded GTCS. This group was compared to 25 patients without widespread suppression (PGES-) as defined by SEEG, matched for epilepsy localization and lateralization. Frequency of GTCS was observed to be higher in the PGES+ group (high risk group for SUDEP). Analysis of metabolic data was performed by statistical parametric mapping (SPM) on the whole-brain, and principal component analysis (PCA) on AAL (automated anatomical labeling) atlas. RESULTS: Statistical parametric mapping showed right temporal pole hypometabolism in the PGES+ group (T-score = 3.90; p < 0.001; k = 185), in comparison to the PGES- group. Principal component analysis showed association between the metabolic values of certain regions of interest and PGES+/PGES- groups, confirmed by a significant difference (p < 0.05) in the values of the right dorsal temporal pole and of the left temporal pole between the two groups. Principal component analysis showed two dimensions significantly related to the PGES+/PGES- partition, involving the following regions: right temporal pole, right parahippocampal gyrus, right Rolandic operculum, bilateral paracentral lobule, right precuneus, right thalamus, right caudate and pallidum, bilateral cerebellum, left temporal pole, left Heschl's gyrus, left calcarine region, and left caudate, with loss of connection in PGES+ patients. Metabolic differences were independent of epilepsy localization and lateralization and persisted after correction for GTCS frequency. SIGNIFICANCE: Interictal metabolic changes within a predominantly right-sided network involving temporal lobe and connected cortical and subcortical structures were seen in patients with frequent GTCS presenting widespread postictal suppression.


Fluorodeoxyglucose F18 , Sudden Unexpected Death in Epilepsy , Electroencephalography , Humans , Positron-Emission Tomography , Seizures/diagnostic imaging
15.
Epilepsy Res ; 169: 106528, 2021 01.
Article En | MEDLINE | ID: mdl-33360538

Skin Conductance Biofeedback (SCB) is a non-invasive behavioral treatment for epilepsy based on modulation of Galvanic Skin Response (GSR). We evaluated changes in functional connectivity occurring after SCB. Six patients with drug-resistant temporal lobe epilepsy underwent monthly SCB sessions. For each patient, 10 min of resting-state magnetoencephalographic (MEG) recording were acquired before and after the first and the last SCB session. For each recording we computed the mean weighted phase lag index (WPLI) across all pair of MEG sensors. After SCB, two patients had consistent reduction of seizure frequency (>50 %). Connectivity analysis revealed a decrease of WPLI-beta band in the two responders and an increase of WPLI-alpha connectivity in all patients regardless of the clinical effect. Results suggest that reduction of WPLI-beta-low connectivity is related to the clinical response after SCB.


Drug Resistant Epilepsy , Epilepsies, Partial , Biofeedback, Psychology , Drug Resistant Epilepsy/therapy , Humans , Magnetoencephalography , Pharmaceutical Preparations
16.
Neurology ; 96(2): e280-e293, 2021 01 12.
Article En | MEDLINE | ID: mdl-33024023

OBJECTIVE: To determine the involvement of subcortical regions in human epilepsy by analyzing direct recordings from these regions during epileptic seizures using stereo-EEG (SEEG). METHODS: We studied the SEEG recordings of a large series of patients (74 patients, 157 seizures) with an electrode sampling the thalamus and in some cases also the basal ganglia (caudate nucleus, 22 patients; and putamen, 4 patients). We applied visual analysis and signal quantification methods (Epileptogenicity Index [EI]) to their ictal recordings and compared electrophysiologic with clinical data. RESULTS: We found that in 86% of patients, thalamus was involved during seizures (visual analysis) and 20% showed high values of epileptogenicity (EI >0.3). Basal ganglia may also disclose high values of epileptogenicity (9% in caudate nucleus) but to a lesser degree than thalamus (p < 0.01). We observed different seizure onset patterns including low voltage high frequency activities. We found high values of thalamic epileptogenicity in different epilepsy localizations, including opercular and motor epilepsies. We found no difference between epilepsy etiologies (cryptogenic vs malformation of cortical development, p = 0.77). Thalamic epileptogenicity was correlated with the extension of epileptogenic networks (p = 0.02, ρ 0.32). We found a significant effect (p < 0.05) of thalamic epileptogenicity regarding the postsurgical outcome (higher thalamic EI corresponding to higher probability of surgical failure). CONCLUSIONS: Thalamic involvement during seizures is common in different seizure types. The degree of thalamic epileptogenicity is a possible marker of the epileptogenic network extension and of postsurgical prognosis.


Basal Ganglia/physiopathology , Electroencephalography/methods , Epilepsies, Partial/physiopathology , Stereotaxic Techniques , Thalamus/physiopathology , Video Recording/methods , Adolescent , Adult , Basal Ganglia/diagnostic imaging , Child , Child, Preschool , Epilepsies, Partial/diagnostic imaging , Female , Humans , Male , Thalamus/diagnostic imaging , Young Adult
17.
Epilepsy Behav ; 112: 107436, 2020 11.
Article En | MEDLINE | ID: mdl-32906017

PURPOSE: Frontal seizures are organized according to anatomo-functional subdivisions of the frontal lobe. Prefrontal seizures have been the subject of few detailed studies to date. The objective of this study was to identify subcategories of prefrontal seizures based on seizure onset quantification and to look for semiological differences. METHODS: Consecutive patients who underwent stereoelectroencephalography (SEEG) for drug-resistant prefrontal epilepsy between 2000 and 2018 were included. The different prefrontal regions investigated in our patients were dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), dorsomedial prefrontal cortex (DMPFC), ventromedial prefrontal cortex (VMPFC), and orbitofrontal cortex (OFC). The seizure onset zone (SOZ) was determined from one or two seizures in each patient, using the epileptogenicity index (EI) method. The presence or absence of 16 clinical ictal manifestations was analyzed. Classification of prefrontal networks was performed using the k-means automatic classification method. RESULTS: A total of 51 seizures from 31 patients were analyzed. The optimal clustering was 4 subgroups of prefrontal seizures: a "pure DLPF" group, a "pure VMPF" group, a "pure OFC" group, and a "global prefrontal" group. The first 3 groups showed a mean EI considered epileptogenic (>0.4) only in one predominant structure, while the fourth group showed a high mean EI in almost all prefrontal structures. The median number of epileptogenic structures per seizure (prefrontal or extrafrontal) was 5 for the "global prefrontal" group and 2 for the other groups. We found that the most common signs were altered consciousness, automatisms/stereotypies, integrated gestural motor behavior, and hyperkinetic motor behavior. We found no significant difference in the distribution of ictal signs between the different groups. CONCLUSION: Our study showed that although most prefrontal seizures manifest as a network of several anatomically distinct structures, we were able to determine a sublobar organization of prefrontal seizure onset with four groups.


Epilepsy, Frontal Lobe , Cluster Analysis , Electroencephalography , Epilepsy, Frontal Lobe/diagnostic imaging , Epilepsy, Frontal Lobe/surgery , Humans , Seizures/diagnosis , Seizures/surgery , Stereotaxic Techniques
18.
Epilepsia ; 61(5): 1019-1026, 2020 05.
Article En | MEDLINE | ID: mdl-32378738

OBJECTIVE: Hyperkinetic epileptic seizures (HKS) are difficult to characterize and localize according to semiologic features. We propose a multicriteria scale to help visual analysis and report results of cerebral localization. METHODS: We assessed seizures from 37 patients with HKS, explored with stereoelectroencephalography during presurgical evaluation. We used a multicriteria scale (hyperkinetic seizure scale [HSS]) with 10 semiologic features, scored independently by two neurologists. The item scores were used to group seizures using the k-means method. Semiologic features were correlated with the seizure onset zone (SOZ) localization (temporal, prefrontal dorsolateral, prefrontal ventromesial, parietal, insular). RESULTS: Fifty-five seizures were analyzed, and each item of the HSS was compared between the two examiners with good interrater agreement (85.3%). Dystonia, integrated behavior, and bilateral or unilateral hyperkinetic movements were statistically significant according to localization. Three clusters were identified according to the HSS and correlated with different patterns of anatomic localization of SOZ. Cluster 1 was characterized clinically by asymmetric hyperkinetic movements associated with marked dystonia and vocalization. It mainly included parietal seizures. Cluster 2 was characterized by bilateral and symmetrical stereotyped hyperkinetic movements without dystonia. It represented half of temporal seizures and one-third of prefrontal seizures (dorsolateral). Cluster 3 was characterized by seizures with strong emotionality and vocalization with bilateral and symmetrical hyperkinetic movements and integrated behavior. It involved half of temporal seizures and a majority of prefrontal (ventromesial) seizures. SIGNIFICANCE: We propose a first attempt to quantify clinical patterns of HKS. The HSS may help to predict SOZ localization according to three main groups of hyperkinetic seizures.


Brain/physiopathology , Hyperkinesis/diagnosis , Seizures/diagnosis , Adolescent , Adult , Brain/diagnostic imaging , Child , Electroencephalography , Female , Humans , Hyperkinesis/diagnostic imaging , Hyperkinesis/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Seizures/diagnostic imaging , Seizures/physiopathology , Severity of Illness Index , Young Adult
19.
Ann Neurol ; 87(6): 976-987, 2020 06.
Article En | MEDLINE | ID: mdl-32279329

OBJECTIVE: Non-rapid eye movement (NREM) sleep is supposed to play a key role in long-term memory consolidation transferring information from hippocampus to neocortex. However, sleep also activates epileptic activities in medial temporal regions. This study investigated whether interictal hippocampal spikes during sleep would impair long-term memory consolidation. METHOD: We prospectively measured visual and verbal memory performance in 20 patients with epilepsy investigated with stereoelectroencephalography (SEEG) at immediate, 30-minute, and 1-week delays, and studied the correlations between interictal hippocampal spike frequency during waking and the first cycle of NREM sleep and memory performance, taking into account the number of seizures occurring during the consolidation period and other possible confounding factors, such as age and epilepsy duration. RESULTS: Retention of verbal memory over 1 week was negatively correlated with hippocampal spike frequency during sleep, whereas no significant correlation was found with hippocampal interictal spikes during waking. No significant result was found for visual memory. Regression tree analysis showed that the number of seizures was the first factor that impaired the verbal memory retention between 30 minutes and 1 week. When the number of seizures was below 5, spike frequency during sleep higher than 13 minutes was associated with impaired memory retention over 1 week. INTERPRETATION: Our results show that activation of interictal spikes in the hippocampus during sleep and seizures specifically impair long-term memory consolidation. We hypothesize that hippocampal interictal spikes during sleep interrupt hippocampal-neocortical transfer of information. ANN NEUROL 2020;87:976-987.


Hippocampus/physiopathology , Memory Consolidation , Memory, Long-Term , Seizures/physiopathology , Seizures/psychology , Sleep , Adolescent , Adult , Electroencephalography , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Prospective Studies , Psychomotor Performance , Sleep, Slow-Wave , Verbal Learning , Young Adult
20.
Epilepsy Behav ; 102: 106646, 2020 01.
Article En | MEDLINE | ID: mdl-31759317

Patients suffering from drug-resistant temporal lobe epilepsy show substantial language deficits (i.e., anomia) during their seizures and in the postictal period (postictal aphasia). Verbal impairments observed during the postictal period may be studied to help localizing the epileptogenic zone. These explorations have been essentially based on simple tasks focused on speech, thus disregarding the multimodal nature of verbal communication, particularly the fact that, when speakers want to communicate, they often produce gestures of various kinds. Here, we propose an innovative procedure for testing postictal language and communication abilities, including the assessment of co-speech gestures. We provide a preliminary description of the changes induced on communication during postictal aphasia. We studied 21 seizures that induced postictal aphasia from 12 patients with drug-refractory epilepsy, including left temporal and left frontal seizures. The experimental task required patients to memorize a highly detailed picture and, briefly after, to describe what they had seen, thus eliciting a communicative meaningful monologue. This allowed comparing verbal communication in postictal and interictal conditions within the same individuals. Co-speech gestures were coded according to two categories: "Rhythmic" gestures, thought to be produced in support of speech building, and "illustrative" gestures, thought to be produced to complement the speech content. When postictal and interictal conditions were compared, there was decreased speech flow along with an increase of rhythmic gesture production at the expense of illustrative gesture production. The communication patterns did not differ significantly after temporal and frontal seizures, yet they were illustrated separately, owing to the clinical importance of the distinction, along with considerations of interindividual variability. A contrast between rhythmic and illustrative gestures production is congruent with previous literature in which rhythmic gestures have been linked to lexical retrieval processes. If confirmed in further studies, such evidence for a facilitative role of co-speech gestures in language difficulties could be put to use in the context of multimodal language therapies.


Aphasia/psychology , Nonverbal Communication , Seizures/psychology , Verbal Behavior , Adolescent , Adult , Aged , Aphasia/etiology , Drug Resistant Epilepsy/psychology , Electroencephalography , Epilepsy, Temporal Lobe/psychology , Female , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Gestures , Humans , Male , Middle Aged , Seizures/complications , Speech , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiopathology , Young Adult
...